# ASPHALT MAINTENANCE & REPAIR



**By: Ron La Porte** 

# **TOPICS COVERED**

- TYPES OF PAVEMENT DISTRESS
- LIFE EXPECTANCY/RECOMMENDATIONS
- MAINTENANCE OPTIONS
- **REPAIR OPTIONS**
- DRAINAGE
- BASIC ASPHALT DESIGN



## **TYPES OF ASPHALT DISTRESS**

- SURFACE RAVELING
- **RUTTING**
- CRACKSPOTHOLES



This section has a video WATCH THE VIDEO



# **TYPES OF ASPHALT DISTRESS**



# **SURFACE RAVELING**

Raveling is the loss of fines and aggregate material from the surface of asphalt. This happens over time with traffic wear. – Oxidation, traffic wear, and drainage can sometimes be blamed for this. Seal Coat protects against this.

# RUTTING



Rutting- This is a great indication of unstable base below the asphalt. It can also happen over time in areas where cars sit such as at the wheels in a parking stall. Places of constant stress like dumpster enclosures are common.

Most likely, stone/dirt should be removed to a depth of stability



# **TYPES OF ASPHALT DISTRESS**



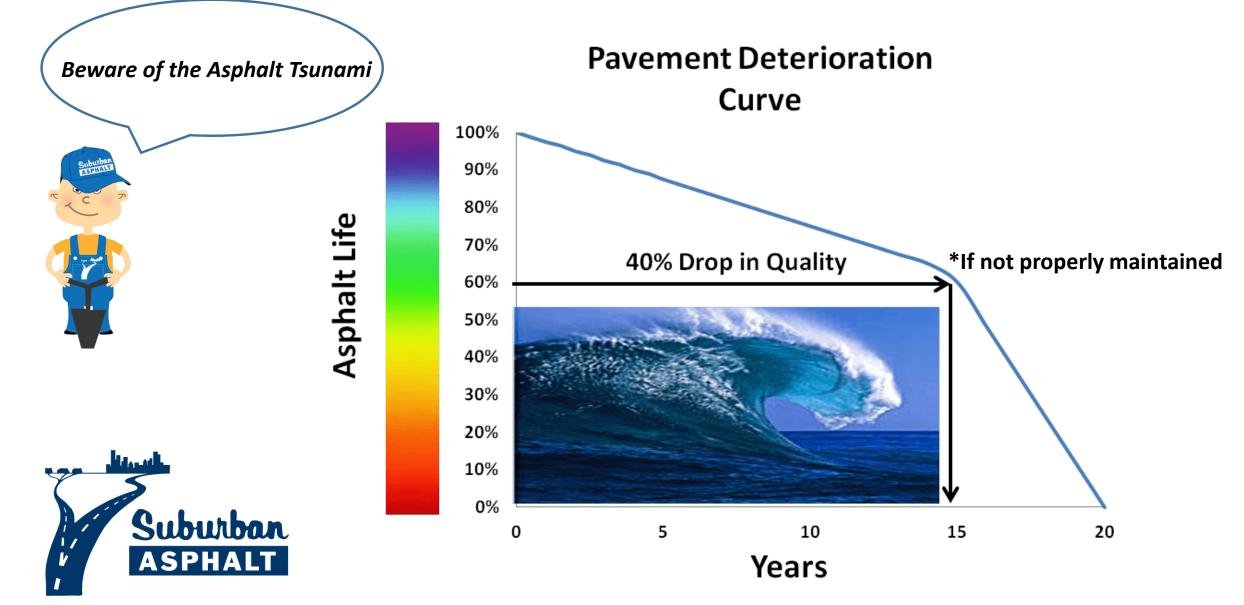
## CRACKS

Cracks are normal and should be expected, especially along paving joints. This is asphalt's way of making its own control joints like you see in concrete, allowing stresses to expand and contract with ease.

Water must be prevented to entering the sub base below the asphalt by regularly sealing cracks.

The picture shown here shows what refer to as "alligator cracking" or "spider web cracking". Once asphalt reaches this point, there is very little maintenance options available.

# POTHOLES


These are often what happens when maintenance is not performed. This is an indication that the asphalt has failed.





# **LIFE EXPECTANCY**

**Sully Says** 



| Sully Says                                                        | ASPHALT<br>LIFE | SIGNS OF DISTRESS                                                                                                | RECOMMENDATIONS                                 |
|-------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Sully Says                                                        | 100 - 90%       | New asphalt pavement. 0 - 3 years old                                                                            | Crack seal & seal coat within first year        |
| Extend asphalt life before reaching<br>60% by routine maintenance | 90 - 80%        | 3 - 7 years old. Possible longitudinal cracks along joints and occasional transverse cracks less than 1/4" wide. | Crack sealing program<br>every year             |
| Sububan                                                           | 80 - 70%        | 7 - 12 years old. Very slight raveling. Longitudinal cracks along joints. Transverse cracks 10'+ apart.          | Crack seal every year,<br>Seal coat every other |
| T C T                                                             | 70 - 60%        | 12 - 15 years old. Raveling more pronounced. Longitudinal cracks & transverse cracks opening to 1/2" wide.       | Patching, crack sealing, seal coating           |
|                                                                   | 60 - 50%        | Surface is aged moderate/severe raveling. Cracks are 1/2"+ wide & closer together <10' apart.                    | 40% loss of life-<br>Mill/resurface (2")        |
|                                                                   | 50 - 40%        | Severe raveling and significant aging. Block cracking up to 50% of pavement.                                     | Structural overlay<br>could extend life         |
|                                                                   | 40 - 30%        | Alligator cracking up to 25% of pavement surface. Slight rutting. Potholes forming.                              | Base patching and overlay (2"+)                 |
|                                                                   | 30 - 20%        | Potholes prevalent. Alligator cracking over 25% of surface.<br>Rutting over 2" deep.                             | Major repairs. Possible reconstruction in spots |
|                                                                   | 20 - 10%        | Approaching the end of asphalt life. Severe distress including alligator cracking up to 50% of surface.          | Pulverization and base stabilization            |
|                                                                   | 10 - 0%         | The end of asphalt life. Extensive loss of integrity.                                                            | Failed. Needs total reconstuction               |





# **OTHER WAYS PAVEMENT CAN FAIL**

# • POOR DRAINAGE

The idea is simple: if water has nowhere to go on the surface, it will find a way to enter the sub base below the asphalt.

# • TRAPPED GROUND WATER

This could happen if a drainage pipe becomes crushed or water runoff from a nearby hill or berm is accumulating in the sub base

# • UNSTABLE SUB GRADE

If an asphalt section is constructed and it was installed on poor sub grade, the pavement will fail prematurely



# SETTLING

Similar to unstable sub grade, if the stone is not compacted correctly below the asphalt or the asphalt layers are not compacted appropriately, they will fall apart much sooner than anticipated

# **MAINTENANCE**

This section has a video **WATCH THE VIDEO** 





# **MAINTENANCE**

Suburbo

# THERE ARE TWO TYPES OF MAINTENANCE THAT EXTEND ASPHALT LIFE:

- CRACK SEALING
- SEAL COATING

Suburban Sully

ASPHALT

STONE

DIRT

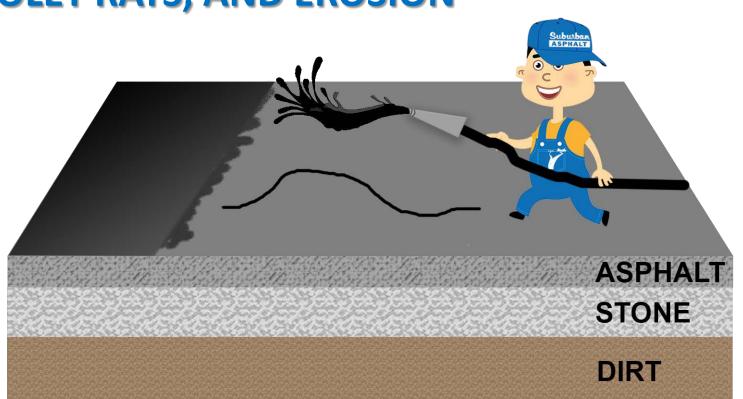


# **CRACK SEALING**

ASPHAL

STONE

DIRT

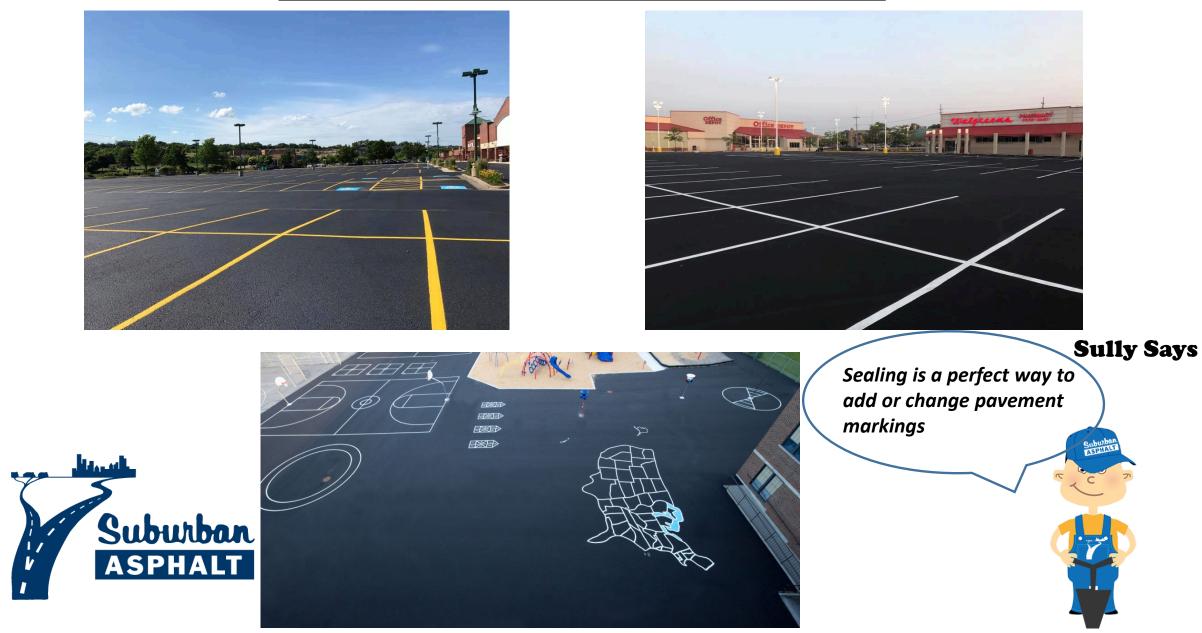

- CRACK SEALING SHOULD BE
  BUDGETED TO DO EVERY YEAR
- THE MOST COST EFFECTIVE FORM OF MAINTENANCE
- REDUCES THE POSSIBILTY OF FUTURE REPAIRS
- HIGH PRIORITY IF BUDGET IS LIMITED



# **SEAL COATING**

- PRIORITIZE AFTER THE FIRST YEAR
- SOONEST: 8 WEEKS (THEN SEAL EVERY 2-3 YEARS)
- PROTECTS AGAINST OXIDATION, OIL AND CHEMICAL SPILLS, BLOCKS ULTRAVIOLET RAYS, AND EROSION
- 2 COATS

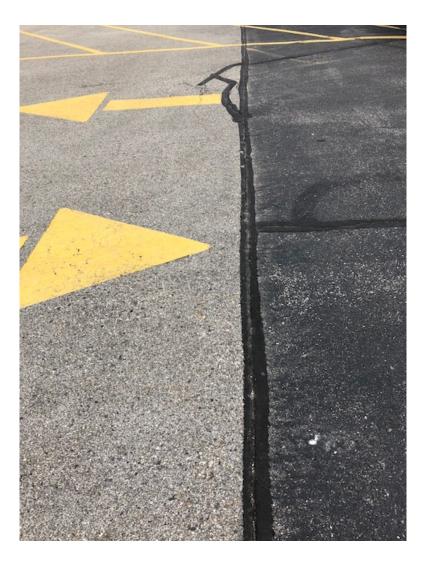





## **SEAL COATING: AESTHETICS**







## **SEAL COATING: AESTHETICS**







Ę





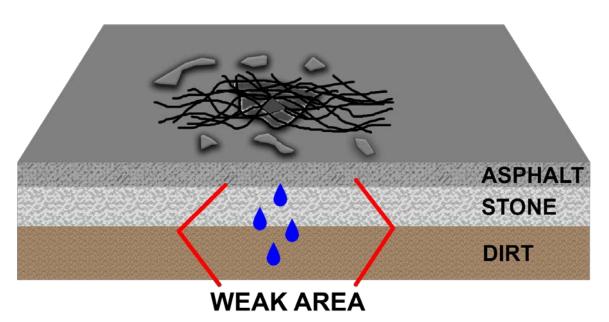
\*Coal tar is outlawed in Milwaukee & Dane County

ASPHALT

## **SEAL COATING**

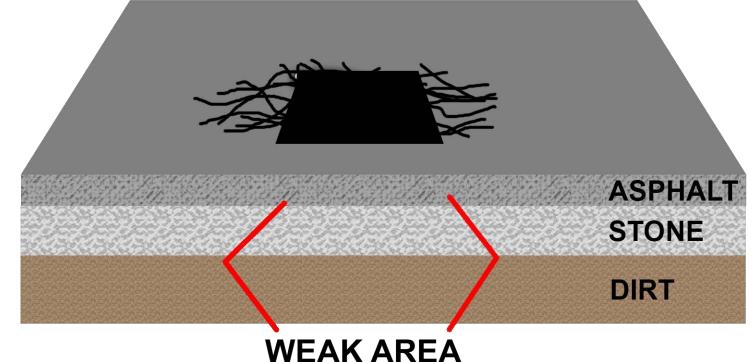
# WHAT IF THE PAVEMENT HAS <u>NOT</u> BEEN SEALED BEFORE?

### THERE IS STILL HOPE!!!!


- **3 COATS**
- 2 COATS THE FOLLOWING YEAR
- RETURN TO 2-3 YEARS



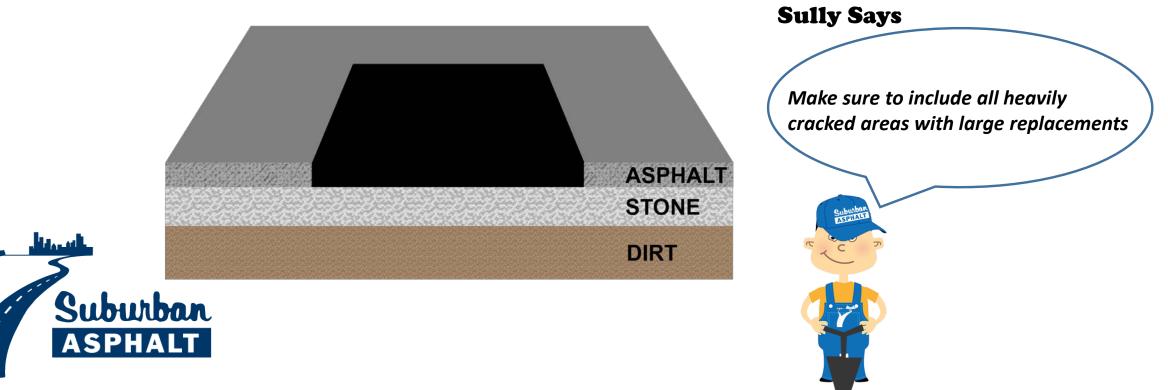
# **TYPES OF REPAIR**


- "SKIN" PATCHING
- REMOVAL & REPLACEMENT
- MLL/OVERLAY
- PULVERIZE/PAVE
- FULL DEPTH RECONSTRUCTION



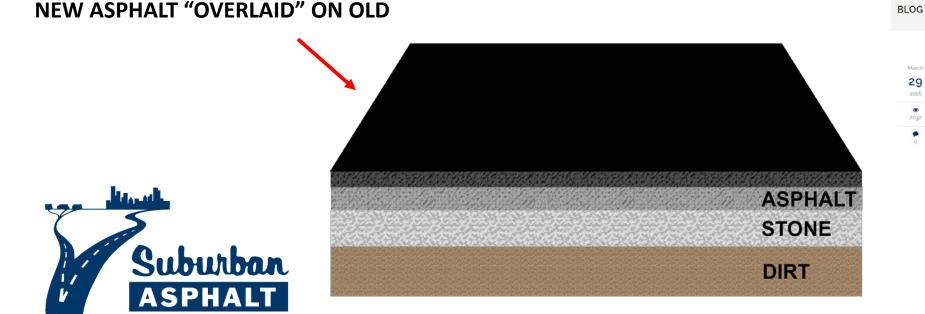


# **"SKIN" PATCHING**


- OTHERWISE KNOWN AS POTHOLE PATCHING
- NO REMOVAL INCLUDED
- LESS EXPENSIVE
- SHORT TERM SOLUTION- MAY NOT LAST THROUGH
  WINTER






# **REMOVAL & REPLACEMENT**

- REMOVES & REPLACES ASPHALT SECTION
- LASTS LONGER THAN "SKIN PATCH"BUT NOT AS LONG AS FULL DEPTH REPLACEMENT
- IF BASE IS ADDRESSED, LONG TERM SOLUTION

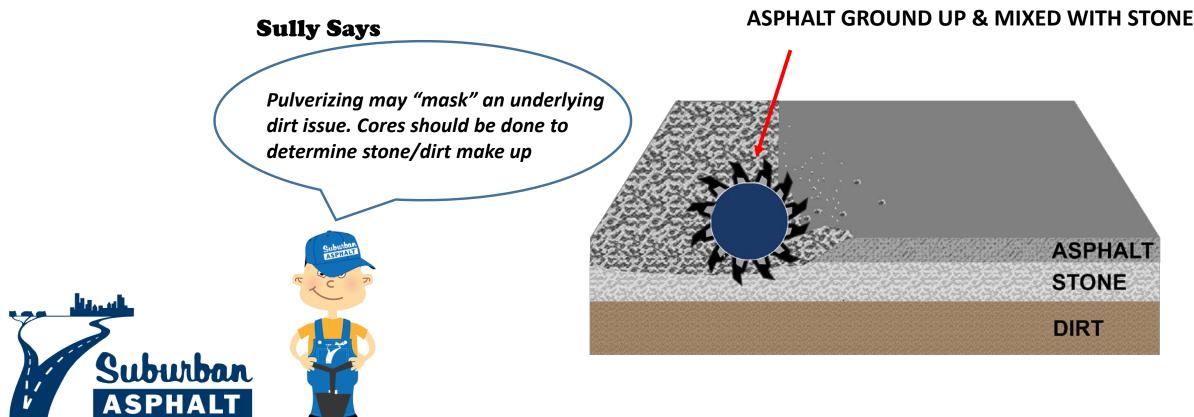


## **ASPHALT OVERLAY**

- NEW ASPHALT IS LAID UPON OLD ASPHALT CREATING A
  NEW SURFACE
- CAN ONLY BE DONE IF ELEVATIONS ALLOW IT
- MID-TERM SOLUTION 7-10 YEARS

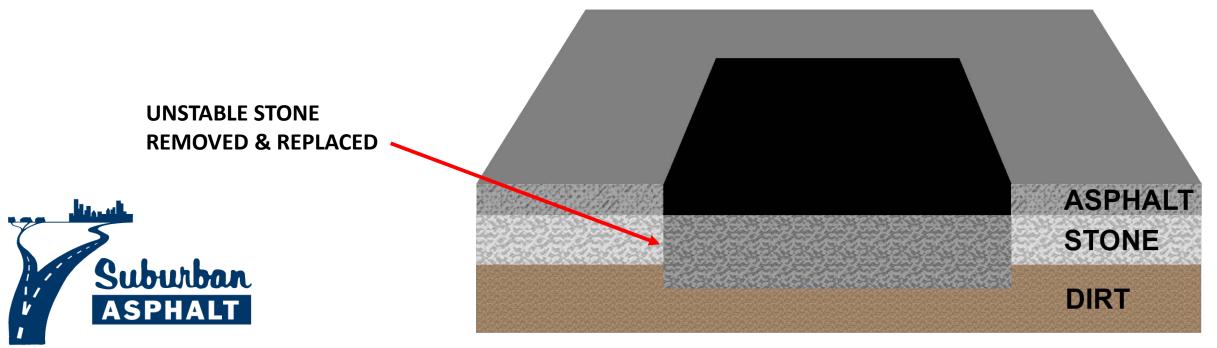


#### Learn more about this <u>HERE</u>

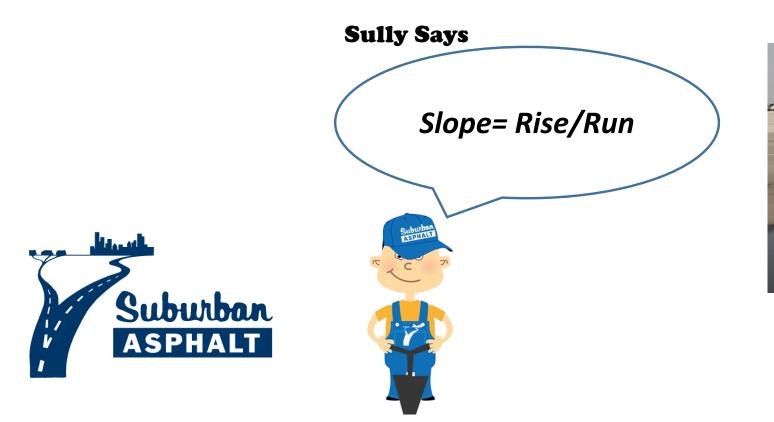



By Ron La Porte In Solutions

RESURFACING AND SEAL COATING ASPHALT

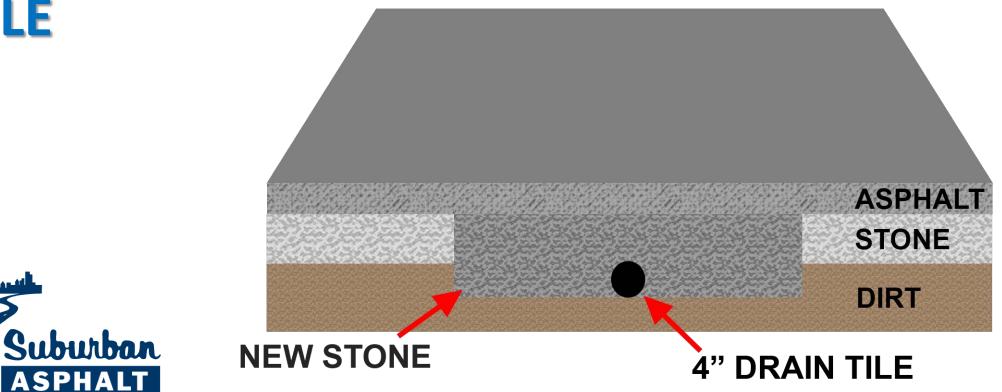

# **PULVERIZE/PAVE**

- PULVERIZING MACHINE GRINDS ASPHALT WITH STONE
- RAISES ELEVATION OF PAVEMENT
- LONG TERM 15-20 YEAR REPAIR




# **FULL DEPTH RECONSTRUCTION**

- REMOVES & REPLACES ASPHALT SECTION AND STONE/DIRT
- DEPTH VARIES & IS DETERMINED BY STABILITY
- LONG TERM SOLUTION 20+ YEARS




- **REQUIRED TO MAINTAIN ASPHALT LIFE**
- PUDDLES ARE A NUISANCE
- SLOPE AT LEAST 1.5%





- GROUND WATER NEEDS TO DRAIN TOO!
- IF BASE IS UNSTABLE, INSTALL DRAIN TILE



- USE RIGID DRAIN TILE INSTEAD OF CORRUGATED
- CORRUGATED CAN BECOME CRUSHED
- RIGID MAINTAINS SLOPE





# • A TRENCH DRAIN IS A NICE OPTION WHERE DRAINGE IS LESS THAN REQUIRED





Ę

• DAMAGED CATCH BASINS CAN RESULT IN COLLAPSED PAVEMENT SECTIONS







# BASIC DESIGN: DETERMINING THICKNESS BASED ON ESALS & SUB GRADE STABILITY

#### ESAL = equivalent single axle load (Approx. 18,000 lbs.)

| Truck Profile | Designation | Application                                | ESAL<br>Factor |
|---------------|-------------|--------------------------------------------|----------------|
|               | 2D          | Local delivery<br>School buses             | 0.3            |
|               | 3SU         | General delivery<br>Refuse                 | 0.8            |
|               | 25-1, 25-2  | General delivery                           | 0.5            |
|               | 3S-2        | Interstate transport<br>Mass transit buses | 0.9            |
|               | 2-S1-2      | Interstate transport                       | 2.0            |

| Tr                                                                     | uck Type (Designation)                          | Number | [1]       | ESAI<br>Facto |   | Daily<br>ESALs |
|------------------------------------------------------------------------|-------------------------------------------------|--------|-----------|---------------|---|----------------|
| _                                                                      | 3-axle single unit (3SU)                        | 25     | ×         | 0.8           | = | 20.0           |
| +                                                                      | 3-axle semitrailer (2S-2)                       | 15     | ×         | 0.5           | = | 7.5            |
| +                                                                      | 3-axle tractor-semitrailer-<br>trailer (2-S1-2) | 10     | ×         | 2.0           | = | 20.0           |
| _                                                                      | Sum to design daily ESALs                       |        |           |               | = | 47.5           |
| Daily $\times$ 365 days per year $\times$ 20 years = 346,750, round up |                                                 |        |           |               |   |                |
| 20                                                                     | -year design ESALs                              |        | = 350,000 |               |   |                |



Ę

# **BASIC DESIGN: DETERMINING THICKNESS**

# • DETERMINE TRAFFIC CLASS OF AREA

Arterials

| Table 6.3. Simplified Assignment of Traffic Class<br>and 20-Year Design ESALs |                                      |                                  |                                                                                                                                          |  |
|-------------------------------------------------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Traffic<br>Class                                                              | Pavement<br>Class (see<br>Table 4.1) | 20-Year<br>Design<br>ESALs Range | Typical Use                                                                                                                              |  |
| I.                                                                            | LT                                   | < 2 million                      | Residential driveways<br>School and recreational areas<br>Playgrounds and tracks<br>Bike paths<br>Sidewalks<br>Parking lots (<50 stalls) |  |
| н                                                                             | LT                                   | < 2 million                      | Low-volume roadways<br>Subdivision streets<br>Collector streets<br>Town roads<br>County roads<br>Parking lots (≥50 stalls)               |  |
| ш                                                                             | MT                                   | 2-8 million                      | Medium-volume roadways<br>Arterial streets<br>Town roads<br>County roads<br>Bus stops                                                    |  |
| IV                                                                            | MT                                   | 2-8 million                      | Roundabouts<br>Slow-moving traffic<br>Town roads (slow-moving)<br>County roads (slow-moving)<br>Industrial parking lots<br>Loading docks |  |
| v                                                                             | HT <sup>[1,2]</sup>                  | > 8 million                      | Truck terminals<br>Industrial roadways                                                                                                   |  |



# **BASIC DESIGN: DETERMINING THICKNESS**

# • ESAL + SUBGRADE TYPE= Thickness

| 20-Year<br>Design |             | Typical Use                                                                                                                   | Asphalt<br>Mixture | Subgrade Type         |                                                                                              | Asphalt with Crushed<br>Aggregate Base |                         | Recommended<br>Surface Layer |
|-------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|----------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|------------------------------|
|                   | ESALs       |                                                                                                                               | Туре               | Rating                | Description                                                                                  | Total Asphalt<br>Thickness (in.)       | Base<br>Thickness (in.) | PG Binder<br>Designation     |
|                   |             | lion Low-volume roadways<br>Subdivision streets<br>Collector streets<br>Town roads<br>County roads<br>Parking lots ≥50 stalls | LT                 | Good-to-<br>excellent | Gravels and coarse sands.<br>SSV $\geq 5.0$                                                  | 3.0 - 3.5                              | 6.0 - 10.0              | S or H                       |
|                   | < 2 million |                                                                                                                               |                    | Medium                | Clays and silts with low plas-<br>ticity. SSV = 4.0 - 4.9.                                   | 3.5 - 4.0                              | 6.0 - 12.0              | S or H                       |
|                   |             |                                                                                                                               |                    | Poor                  | Clays and silts with high plas-<br>ticity; sugary (incompactable)<br>sands. SSV = 2.5 - 3.9. | 4.0 - 4.5                              | 9.0 - 14.0              | S or H                       |

